Genopets Staking Program
Audit Report

20.06.2022

SolShield



SolShield @
S

Introduction
Overview
Account Structure

AN NN

Reward Mechanism

(6}

Methodology

Findings & Mitigations
Arithmetic Computation Bugs
Account Validation Bugs

0 N o o

Miscellaneous & Logical Bugs



SolShield @
S

Introduction

SolShield conducted a full security audit and vulnerability analysis on the Genopets Staking
Program. The audit process took approximately ~2 weeks to complete starting from April
27th and ending on May 13th. This report briefly covers the program’s workflow along with
a short description of the vulnerabilities discovered by the SolShield team.

Overall, we classified 7 brackets of bugs which the multiple issues identified by our team
fall into. Gladly, all of them have since been patched by the Genopets development team.

Overview

The Genopets Staking is a recently launched incentive program to reward the GENE token
holders __the governance token of the Genoverse. The team has made careful design
decisions and considerations to reward early adopters, incentivize long term staking and
enabling users to enjoy the staking rewards without inflating the GENE supply.

At a high-level, the program is inspired by the llluvium staking. Rewards are associated with
each staking pool whereby to encourage early staking, a decaying factor is applied to
exponentially accumulate lesser rewards over time. Moreover, the longer a staker chooses
to lock their stake, a higher reward bonus is used for their reward calculation, hence
incentivizing extended staking. The most notable component of the architecture is the
double-token mechanism. Stakers can claim their rewards in the form of an instantly
redeemable synthetic token called sGENE instead of waiting for GENE unlocks. The sGENE
token can be used for in-game purposes, however it has minimal liquidity and cannot be
swapped for GENE after being claimed. This preserves GENE scarcity all in while ensuring
that users can enjoy its utility and their rewards via the synthetic token without waiting for
the default 1 year lockout.

For more details about the staking program, please refer to the Genopets litepaper.

Account Structure

In this section, we take a closer look at the program’s implementation in Solana’s
programming model. Here we briefly explain the adopted account model and structure.

- Stake Master:

The Stake Master is a singleton account which holds general data and parameters
like the program authority, start and end dates, epoch times, etc. The accountis a


https://staking.illuvium.io/staking
https://litepaper.genopets.me/tokenomics-update/gene-staking

SolShield @

PDA with deterministic seeds and once initialized cannot be re-initialized later. There
are multiple instructions to modify the various parameters set in this account,
however, they are safely limited to be only accessible by the master authority
enforced through Anchor framework macros and attributes.

- Staking Pool:

Accounts that hold the data and parameters about each staking pool. Also PDAs,
these accounts can only be created by the master authority above. At this time,
there is only one staking pool accepting GENE tokens, however there will be more as
the staking program evolves.

Of notable parameters saved in this account is the pool weight, pool token and pool
unlock dates.

- Staker:

The program creates exactly one staker account per user holding universal data
about the stake/withdraw parameters and yield rewards of the user. A PDA with the
user’s public key as part of the seeds, the account holds information like total
rewards earned by the user, the rewards distributed thus far and most importantly
an index parameter determining the seed input for the deposit accounts explained
below.

- Deposit:

The deposit accounts are responsible to keep track of user’s funds locked in
program controlled token accounts for either staked or reward GENE. A deposit
account is created every time a user stakes tokens or claims yield rewards. Please
note that the yield deposit account is only necessary for when yield is claimed as
GENE because sGENE yields are immediately redeemable and can be utilized for
in-game purposes.

There is a one-to-many relationship between the staker and the deposit accounts.
To keep track of the number of deposit accounts, as stated above, an index is kept
in the staker account whereby it's used as part of the PDA seed and subsequently

incremented each time a deposit account is initialized.

These accounts play a crucial role in the implementation of the program as they
keep important information such as the type and amount of locked tokens and
unlock dates.



SolShield @
S

Reward Mechanism

The amount of yield distributed among all stakers across all staking pools is controlled by
an accumulating parameter (for more info re. llluvium). This parameter is updated with a
synchronization method. that fetches the current rewards rate which in turn is controlled
by a decaying factor. This factor decreases the emission of GENEs after each epoch
following the formula below:

R = R, * decay_factor(EPOCh_ Y
With the current decay factor set to be 0.97 and the epoch of 14 days, this means the
reward rate is exponentially decreased by 3% every 2 weeks.

In addition to the decaying rewards, a reward bonus is associated to incentivize long term
staking. The mechanism is pretty much similar to the decaying factor but with an
exponential base of 5. The formula is as follows:

locked_months
1 year

reward_bonus = 5

This means for example that locking tokens for 1 year gives you a bonus of 5x over locking
tokens for 1 month.

As we see later, instead of using exponentials and exposing the program to the risk of
falling into floating-point pitfalls, our team proposed a static solution by sampling the
exponentials at discrete points in time. This was possible because the staking duration for
genopets is currently bounded between 1 and 24 months, hence, all the calculations could
be bounded to that interval.


https://staking.illuvium.io/staking

SolShield @
S

Methodology

After the initial contact from the Genopets team, we held an online session to go through
the logic and the code structure. The complexity of the implementation was assessed to be
unnecessarily high, therefore and thanks to the effort of the core developers from
Genopets, a code revamp was done which took ~2 weeks to complete.

After that, we started to do extensive code analysis. The staking program makes extensive
and spot-on use of PDAs to manage program associated data. The SolShield team also took
extra care to confirm the program is resilient against classic Solana program attacks such
as account re-initialization and substitution, missing authority and signer checks and token
account confusions.

Instances of these primitive classes of vulnerabilities were discovered which we will explain
later. In the next step, to guarantee the implementation follows the intended program
specification, our lead auditor had multiple 1-on-1 sessions with the lead developer of the
program, where we inspected the data flow through program logic ensuring correct
behavior.

Then, as per SolShield promise, our team deployed the program on devnet and ran intense
fuzzy and penetration tests, hitting the program with custom transactions with randomly
generated data and different types of accounts to uncover any residual attack vector that
might put the program in danger.

Lastly, we reported all the bugs and discoveries to the Genopets team with suggestions on
how to resolve and mitigate the issues. The developers were swift in releasing patches to
address the vulnerabilities we pointed out. The final code was scanned yet once again as a
clean up review to ensure the validity of the fixes and that no new vulnerabilities were
introduced in the process.



SolShield @

Findings & Mitigations

In this section, we enumerate and categorize the discovered vulnerabilities and give a short
description of the security implications and their resolutions.

Arithmetic Computation Bugs

1. Avoiding floating-point arithmetic

The original code of the program used rust powf function for the exponential
computations needed for both the decaying rewards and the reward bonus. These
functions take inputs as floating point numbers which are highly recommended to
be avoided.

Since the staking period is limited between 1-24 months, we noticed that only
discrete points on the exponential curve are used during the life of the program,
namely, 12 points for user reward bonus and 24 points for decaying rewards.
Hence, we recommended to the team to use sampled points in the integer format
with fixed-point arithmetic to avoid the whole floating-point logic and terminate the
gateway to a major class of bugs altogether.

2. Bit-extended fixed-point arithmetic

To perform the multiplication/division on the integer numbers resulting from above,
we utilized a similar mechanism to how the basis point calculation is performed in
Defi or NFT royalties. The numbers are bit-extended from u64 to u128 for the
multiplication and the decimal point is recovered by a division to a proper divisor
e.g. 10000. Combined with the previous trick, this completes the exponential
aversion.

3. Opt-in for checked operations & simplified expressions

There were multiple instances where bare +/- rust operations were used for
addition/summation. By using the conventional checked operation, the code is now
certain to be safe from common overflow and underflow vulnerabilities.

Also per our discussion with Genopets team, we made a great deal of simplification
to the composition of the mathematical expressions and the sanity checks. For
example, computing the min and max duration for a stake deposit was originally
carried out multiple times with intermediate results not kept for future calculations.



SolShield @
S

Account Validation Bugs

4. Missing constraints for deposit accounts

As mentioned before, the deposit accounts are responsible for holding data
regarding both user’s locked staked and reward GENE tokens. They are used
extensively in the program especially in all 3 instructions of Stake, Withdraw and
Claim. A close inspection of the validations enforced on these accounts through
anchor constraints, revealed account substitution and re-initialization attacks

vectors.

This code section shows the use of deposit accounts in the Withdraw instruction. An
attacker could pass the same newly created user_re_deposit account as
user_deposit and in the absence of proper checks put in later by the fixes, claim the
rewards pre-maturely. This pattern was observed especially in the first draft of the
code where upon our recommendation, the Genopets developers paid extra
attention to make sure these confusions are avoided entirely.

#[account(
init_if needed,
seeds = [
DEPOSIT TAG.as_ref(),
user.key().as_ref(),
&staker.current_deposit_index.to_le_bytes()

15

bump,

payer = user,

space = Deposit::LEN
)]

pub user_re_deposit: Account<'info, Deposit>,

#[account(mut, constraint = user_deposit.user == user.key(), close = user)]
pub user_deposit: Account<'info, Deposit>,

5. Insufficient checks on Associated Token Accounts (ATA)

Throughout the code, there were numerous occurrences of using token accounts
assumed to be associated token accounts but the actual PDA checks for the ATA
were not performed. We suggested using the convenient assert is ata function from
the Metaplex Program Library to enforce the ATA conditions.


https://github.com/metaplex-foundation/metaplex-program-library/blob/d8d6e1c29fcf4254c728e0ea134f1e00f00a0225/auction-house/program/src/utils.rs#L22

SolShield @

Miscellaneous & Logical Bugs

6. Inability to claim GENE rewards

The withdraw function is both used to get back the GENE rewards and the initial
staked GENE. In order to do so, the program makes use of binary conditionals to
determine the parameters passed to the Transfer cross program invocation into the
Token Program. In our review, we observed that the transfer authority was
constantly passed as the staker account which means only staked GENE tokens
were redeemable. This can be seen in the code segment below taken from the faulty
code.

let signer_seeds: &[&[u8]] = if self.user_deposit.is_yield {

rewarder_seeds

} else {
staker_seeds

}s

let from_account = if self.user_deposit.is_yield {
self.ata_gene_rewarder.to_account_info()

} else {
self.ata_vault.to_account_info()

};

cpi_accounts = Transfer {
from: from_account,
to: self.ata user.to _account_info(),
authority: self.staker.to_account_info(),

}s

The fix should, similar to the other variables, check if the deposit account is a yield
account or not and assign the correct authority accordingly.

7. Kill switch

With the use of the anchor attribute (access_control), we built in a kill switch over all
the instructions which could be triggered by the master authority. With the purpose
of halting the system in case a future incident happens, this prevents disputable
upgrades to prevent losses and can eventually be easily removed once the code has
proved to be secure and robust in the production environment for a while.



